Abstract

Many compounds such as amino acids and oligonucleotides have been shown to effectively change peroxidase-like activity of nanoparticles. While a few studies have focused on mimicking the active site of natural enzymes on nanozymes and thus increasing their substrate affinity. Therefore, in this work, the surface of FeCo@WO3 nanocomposite was modified using guanosine triphosphate (GTP) to mimic the histidine of peroxidase enzyme's active site and its modification was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). Then, the peroxidase-mimicking activity of the modified nanocomposite was tested using a colorimetric method, based on the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). It was found that GTP improves the activity of FeCo@WO3 as a natural peroxidase active site's distal histidine residue. Ascorbic acid (AA) is a powerful antioxidant that induces the reduction of blue color (oxidized TMB) ox-TMB to colorless TMB. The colorimetric method was applied for the sensitive detection of AA in common fruits. The linear range of AA was 10–100 μM with a limit of detection (LOD) of 0.27 μM, which provides a rapid and sensitive method for testing AA in the field of food analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call