Abstract

Detecting the organ boundary in an ultrasound image is challenging because of the poor contrast of ultrasound images and the existence of imaging artifacts. In this study, we developed a coarse-to-refinement architecture for multi-organ ultrasound segmentation. First, we integrated the principal curve-based projection stage into an improved neutrosophic mean shift-based algorithm to acquire the data sequence, for which we utilized a limited amount of prior seed point information as the approximate initialization. Second, a distribution-based evolution technique was designed to aid in the identification of a suitable learning network. Then, utilizing the data sequence as the input of the learning network, we achieved the optimal learning network after learning network training. Finally, a scaled exponential linear unit-based interpretable mathematical model of the organ boundary was expressed via the parameters of a fraction-based learning network. The experimental outcomes indicated that our algorithm 1) achieved more satisfactory segmentation outcomes than state-of-the-art algorithms, with a Dice score coefficient value of 96.68 ± 2.2%, a Jaccard index value of 95.65 ± 2.16%, and an accuracy of 96.54 ± 1.82% and 2) discovered missing or blurry areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.