Abstract

SUMMARYThis paper describes the development of efficient and robust numerical integration schemes for rate‐dependent crystal plasticity models. A forward Euler integration algorithm is first formulated. An integration algorithm based on the modified Euler method with an adaptive substepping scheme is then proposed, where the substepping is mainly controlled by the local error of the stress predictions within the time step. Both integration algorithms are implemented in a stand‐alone code with the Taylor aggregate assumption and in an explicit finite element code. The robustness, accuracy and efficiency of the substepping scheme are extensively evaluated for large time steps, extremely low strain‐rate sensitivity, high deformation rates and strain‐path changes using the stand‐alone code. The results show that the substepping scheme is robust and in some cases one order of magnitude faster than the forward Euler algorithm. The use of mass scaling to reduce computation time in crystal plasticity finite element simulations for quasi‐static problems is also discussed. Finally, simulation of Taylor bar impact test is carried out to show the applicability and robustness of the proposed integration algorithm for the modelling of dynamic problems with contact. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call