Abstract

In recent decades, nucleic acid self-assemblies have emerged as popular nanomaterials due to their programmable and robust assembly, prescribed geometry, and versatile functionality. However, it remains a challenge to purify large quantities of DNA nanostructures or DNA-templated nanocomplexes for various applications. Commonly used purification methods are either limited by a small scale or incompatible with functionalized structures. To address this unmet need, we present a robust and scalable method of purifying DNA nanostructures by Sepharose resin-based size exclusion. The resin column can be manually packed in-house with reusability. The separation is driven by a low-pressure gravity flow in which large DNA nanostructures are eluted first followed by smaller impurities of ssDNA and proteins. We demonstrated the efficiency of the method for purifying DNA origami assemblies and protein-immobilized DNA nanostructures. Compared to routine agarose gel electrophoresis that yields 1 μg or less of purified products, this method can purify ∼100-1000 μg of DNA nanostructures in less than 30 min, with the overall collection yield of 50-70% of crude preparation mixture. The purified nanocomplexes showed more precise activity in evaluating enzyme functions and antibody-triggered activation of complement protein reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.