Abstract

Wideband acoustic imaging, which combines compressed sensing (CS) and microphone arrays, is widely used for locating acoustic sources. However, the location results of this method are unstable, and the computational efficiency is low. In this work, in order to improve the robustness and reduce the computational cost, a DCS-SOMP-SVD compressed sensing method, which combines the distributed compressed sensing using simultaneously orthogonal matching pursuit (DCS-SOMP) and singular value decomposition (SVD) is proposed. The performance of the DCS-SOMP-SVD is studied through both simulation and experiment. In the simulation, the locating results of the DCS-SOMP-SVD method are compared with the wideband BP method and the DCS-SOMP method. In terms of computational efficiency, the proposed method is as efficient as the DCS-SOMP method and more efficient than the wideband BP method. In terms of locating accuracy, the proposed method can still locate all sources when the signal to noise ratio (SNR) is − 20 dB, while the wideband BP method and the DCS-SOMP method can only locate all sources when the SNR is higher than 0 dB. The performance of the proposed method can be improved by expanding the frequency range. Moreover, there is no extra source in the maps of the proposed method, even though the target sparsity is overestimated. Finally, a gas leak experiment is conducted to verify the feasibility of the DCS-SOMP-SVD method in the practical engineering environment. The experimental results show that the proposed method can locate both two leak sources in different frequency ranges. This research proposes a DCS-SOMP-SVD method which has sufficient robustness and low computational cost for wideband acoustic imaging.

Highlights

  • Acoustic imaging, which uses planar microphone array and beamforming methods [1,2,3,4,5], is widely employed for locating acoustic sources

  • 5 Experimental Results and Analysis In order to verify the feasibility of the distributed compressed sensing (DCS)-Simultaneous orthogonal matching pursuit (SOMP)-singular value decomposition (SVD) method in the real application, we conducted an experiment of gas leakage for wideband acoustic imaging at the Northwestern Polytechnical University

  • 6 Conclusions In this paper, we have proposed a DCS-SOMP-SVD method for wideband acoustic imaging

Read more

Summary

Introduction

Acoustic imaging, which uses planar microphone array and beamforming methods [1,2,3,4,5], is widely employed for locating acoustic sources. The method employs the adaptive array signal processing theory, adjusts weights flexibly, and improves the beamforming performance [16]. He proposed a new direction of arrival (DOA) estimation method of wideband source, which is based on iterative adaptive spectral reconstruction, which can be applied to coherent sources and improve the accuracy of DOA estimation [17]. They all increase computational complexity and time costs, cannot meet the real-time requirements

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.