Abstract

A robust and general solver for Laplace’s equation on the interior of a simply connected domain in the plane is described and tested. The solver handles general piecewise smooth domains and Dirichlet, Neumann, and Robin boundary conditions. It is based on an integral equation formulation of the problem. Difficulties due to changes in boundary conditions and corners, cusps, or other examples of non-smoothness of the boundary are handled using a recent technique called recursive compressed inverse preconditioning. The result is a rapid and very accurate solver which is general in scope, its performance is demonstrated via some challenging numerical tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.