Abstract

A new iterative technique to reduce the ringing artifacts in chemical shift images due to the truncation of the high spatial frequency is presented. In this approach the authors extrapolate the high spatial frequency data guided by the edge information obtained from a high resolution anatomic image of the region of interest. The fact that the edge information obtained from the anatomic image can be off by a few pixels (due to factors such as chemical shift artifact, error in edge detection or misregistration) is taken into account by assuming a confidence interval of several pixels around the anatomic edges. The algorithm is validated on simulated and in vivo data, and excellent results were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.