Abstract

In this paper, a robust adaptive sliding-mode control scheme for rigid robotic manipulators with arbitrary bounded input disturbances is proposed. It is shown that the prior knowledge on the upper bound of the norm of the input disturbance vector is not required in the sliding-mode controller design. An adaptive mechanism is introduced to estimate the upper bound of the norm of the input disturbance vector. The estimate is then used as a controller gain parameter to guarantee that the output tracking error asymptotically converges to zero and strong robustness with respect to bounded input disturbances can be obtained. A simulation example is given in support of the proposed control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.