Abstract

We introduce a robust and fully adaptive method for pointwise estimation in heteroscedastic regression. We allow for noise and design distributions that are unknown and fulfill very weak assumptions only. In particular, we do not impose moment conditions on the noise distribution. Moreover, we do not require a positive density for the design distribution. In a first step, we study the consistency of locally polynomial M-estimators that consist of a contrast and a kernel. Afterwards, minimax results are established over unidimensional H\"older spaces for degenerate design. We then choose the contrast and the kernel that minimize an empirical variance term and demonstrate that the corresponding M-estimator is adaptive with respect to the noise and design distributions and adaptive (Huber) minimax for contamination models. In a second step, we additionally choose a data-driven bandwidth via Lepski's method. This leads to an M-estimator that is adaptive with respect to the noise and design distributions and, additionally, adaptive with respect to the smoothness of an isotropic, multivariate, locally polynomial target function. These results are also extended to anisotropic, locally constant target functions. Our data-driven approach provides, in particular, a level of robustness that adapts to the noise, contamination, and outliers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.