Abstract

ABSTRACT The problem of designing a flux observer for magnetic field electromechanical systems from noise corrupted measurements of currents and voltages is addressed in this paper. Imposing a constraint on the systems magnetic energy function, which allows us to construct an algebraic relation between fluxes and measured voltages and currents that is independent of the mechanical coordinates, we identify a class of systems for which a globally convergent adaptive observer can be designed. A new adaptive observer design technique that effectively exploits the aforementioned algebraic relation is proposed and successfully applied to the practically important examples of permanent magnet synchronous motors and magnetic levitation systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.