Abstract

Summary This paper deals with the robust observer-based control design for a class of Lipschitz nonlinear discrete-time systems with parameter uncertainties. Based on the use of a reformulated Lipschitz property combined with the slack variable techniques and some mathematical artifacts, it is shown that the solution of the discrete-time output feedback stabilization problem is conditioned by a set of bilinear matrix inequalities, which become linear matrix inequalities by freezing some scalars. Furthermore, we show that some existing and elegant results reported in the literature can be regarded as particular cases of the stability conditions presented here. Numerical examples are provided to show the validity and superiority of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.