Abstract

Knowledge of the temporal and spatial abundance of invertebrate larvae is critical to understanding the dispersal capabilities and recruitment potential of marine and aquatic organisms. Traditional microscopic analyses are time-consuming and difficult given the diversity of larval species and a frequent lack of discriminating morphological characteristics. Here, we describe a sensitive rRNA targeted sandwich hybridization assay (SHA) that uses oligonucleotide probes to detect and enumerate the larvae of invasive green crabs (Carcinus maenas), native blue mussels (Mytilus), native barnacles (Balanus) and polychaetes (Osedax and Ophelia) that occur in the Monterey Bay National Marine Sanctuary, California. Laboratory-based assays demonstrate specificity, high sensitivity, and a quantitative response to cultured samples from three of the target organisms. Oligonucleotide probes were then printed in arrays on nitrocellulose membranes and deployed in our robotic Environmental Sample Processor (ESP) to detect larvae in situ and autonomously. We demonstrate that the SHA-detection method and ESP robot can be used for near real-time, in situ detection of larval species in the marine environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.