Abstract

The railway industry is progressively embracing mechatronics solutions to improve maintenance operations. In this context, we present a robotic device that introduces structural dynamics analysis in railway pantograph inspection. Specifically, an innovative macro-micro actuation extends the bandwidth performance of actual devices, while a force control strategy proved to support the execution of nonlinearity tests via the estimation of the Frequency Response Function for different levels of the input force. Thereupon we show that the exploitation of nonlinearity can enhance the detection of even a minor localized fault.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call