Abstract

Computational psychiatry is increasingly establishing itself as a valuable discipline for understanding human mental disorders. However, robot models and their potential for investigating embodied and contextual aspects of mental health have been, to date, largely unexplored. In this article, we present an initial robot model of obsessive-compulsive (OC) spectrum disorders based on an embodied motivation-based control architecture for decision-making in autonomous robots. The OC family of conditions is chiefly characterized by obsessions (recurrent, invasive thoughts) and/or compulsions (an urge to carry out certain repetitive or ritualized behaviors). The design of our robot model follows and illustrates a general design framework that we have proposed to ground research in robot models of mental disorders and to link it with existing methodologies in psychiatry, notably in the design of animal models. To test and validate our model, we present and discuss initial experiments, results, and quantitative and qualitative analyses regarding the compulsive and obsessive elements of OC-spectrum disorders. While this initial stage of development only models basic elements of such disorders, our results already shed light on aspects of the underlying theoretical model that are not obvious simply from consideration of the model.

Highlights

  • The growing field of computational psychiatry (Adams, Huys, & Roiser, 2016; Corlett & Fletcher, 2014; Huys, Maia, & Frank, 2016; Montague, Dolan, Friston, & Dayan, 2012; Stephan & Mathys, 2014; Wang & Krystal, 2014) includes within its aims the application of computational techniques to understand, and better treat, human mental disorders

  • Computational psychiatry is increasingly establishing itself as valuable discipline for understanding human mental disorders

  • We present an initial robot model of obsessive-compulsive (OC) spectrum disorders based on an embodied motivation-based control architecture for decision making in autonomous robots

Read more

Summary

Introduction

The growing field of computational psychiatry (Adams, Huys, & Roiser, 2016; Corlett & Fletcher, 2014; Huys, Maia, & Frank, 2016; Montague, Dolan, Friston, & Dayan, 2012; Stephan & Mathys, 2014; Wang & Krystal, 2014) includes within its aims the application of computational techniques to understand, and better treat, human mental disorders. This includes the use of simulations to explore and compare theorized mechanisms for diseases. Compared to purely computational models, robots, like animals, allow us to

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.