Abstract

This article proposes a robot calibration method using an extended Kalman filter (EKF) and an artificial neural network (ANN) based on a butterfly and flower pollination algorithm (ANN-BFPA) to improve the robot’s absolute pose (position and orientation) accuracy. After establishing a geometric error model, the EKF, a robust optimization algorithm for a nonlinear system with Gaussian noise, was used to estimate geometric parameter errors and compensate for geometric errors. However, nongeometric errors caused by joint clearance, gear backlash, and link deflection could still affect the pose accuracy and interfere with the correctness of the model. Therefore, the ANN-BFPA was proposed to compensate for these errors. The ANN model was used to establish the complex relationship between joint lengths and pose error. In addition, BFPA was used to optimize weights and bias of the neural network. The efficiency of the proposed calibration method was evaluated using a Stewart platform. Experimental results demonstrated that the proposed method significantly improved the robot’s pose accuracy and showed better performance than previous techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.