Abstract

Purpose – The purpose of this paper is to propose a robot-assisted assembly system (RAAS) for the installation of a variety of small components in the aircraft assembly system. The RAAS is designed to improve the assembly accuracy and increase the productive efficiency. Design/methodology/approach – The RAAS is a closed-loop feedback system, which is integrated with a laser tracking system and an industrial robot system. The laser tracking system is used to evaluate the deviations of the position and orientation of the small component and the industrial robot system is used to locate and re-align the small component according to the deviations. Findings – The RAAS has exhibited considerable accuracy improvement and acceptable assembly efficiency in aircraft assembly project. With the RAAS, the maximum position deviation of the component is reduced to 0.069 mm and the maximum orientation deviation is reduced to 0.013°. Social implications – The RAAS is applied successfully in one of the aircraft final assembly projects in southwest China. Originality/value – By integrating the laser tracking system, the RAAS is constructed as a closed-loop feedback system of both the position and orientation of the component. With the RAAS, the installation a variety of small components can be dealt with by a single industrial robot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call