Abstract
The exponentially increasing stream of real time big data produced by Web 2.0 Internet and mobile networks created radically new interdisciplinary challenges for public health and computer science. Traditional public health disease surveillance systems have to utilize the potential created by new situation-aware realtime signals from social media, mobile/sensor networks and citizens? participatory surveillance systems providing invaluable free realtime event-based signals for epidemic intelligence. However, rather than improving existing isolated systems, an integrated solution bringing together existing epidemic intelligence systems scanning news media (e.g., GPHIN, MedISys) with real-time social media intelligence (e.g., Twitter, participatory systems) is required to substantially improve and automate early warning, outbreak detection and preparedness operations. However, automatic monitoring and novel verification methods for these multichannel event-based real time signals has to be integrated with traditional case-based surveillance systems from microbiological laboratories and clinical reporting. Finally, the system needs effectively support coordination of epidemiological teams, risk communication with citizens and implementation of prevention measures.However, from computational perspective, signal detection, analysis and verification of very high noise realtime big data provide a number of interdisciplinary challenges for computer science. Novel approaches integrating current systems into a digital public health dashboard can enhance signal verification methods and automate the processes assisting public health experts in providing better informed and more timely response. In this paper, we describe the roadmap to such a system, components of an integrated public health surveillance services and computing challenges to be resolved to create an integrated real world solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.