Abstract

This review will show that low-CO2 cements can be produced to give superior durability, based on a sound understanding of their microstructure and how it impacts macro-engineering properties. For example, it is essential that aluminium is available in calcium-rich alkali-activated systems to offset the depolymerisation effect of alkali cations on C-(N-)A-S-H gel. The upper limit on alkali cation incorporation into a gel greatly affects mix design and source material selection. A high substitution of cement clinker in low-CO2 cements may result in a reduction of pH buffering capacity, hence susceptibility to carbonation and corrosion of steel reinforcement. With careful mix design, a more refined pore structure and associated lower permeability can still give a highly durable concrete. It is essential to expand thermodynamic databases for current and prospective cementitious materials so that concrete performance and durability can be predicted when using low-CO2 binders. Cationic copolymer and amphoteric plasticisers, when available commercially, will enhance the development of alkali-activated materials. The development of supersonic shockwave reactors will enable the conversion of a wide range of virgin and secondary source materials into cementitious materials, replacing blast furnace slag and coal fly ash that have dwindling supply. A major obstacle to the commercial adoption of low-CO2 concrete is the prescriptive nature of existing standards and design codes, so there is an urgent need to shift towards performance-based standards. The roadmap presented here is not an extension of current cement practice, but a new way of integrating fundamental research, equipment innovation, and commercial opportunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.