Abstract

Bridges play a crucial role in modern societies, regardless of their culture, geographical location, or economic development. The safest, most economical, and most resilient bridges are those that are well managed and maintained. Recently, climate change has been posed as one of the greatest concerns for the health of bridges. Although the uncertainty associated with the magnitude of the change is large, the fact that our climate is changing is unequivocal. As a result, making bridges resilient to climate change is a priority for the authorities. A well-planned early intervention may save lives and money. Until now, the focus of scientific research has mostly been on the climate science, but any practical plan for the adaptation of bridges has to be rooted in other disciplines, including physics, chemistry, engineering, economics, and finance. Therefore, the goal of this paper is to review the work already done from climate change to bridges and set a roadmap for an integrated assessment approach to the adaptation of bridges to climate change. This approach is grounded in a probabilistic- and physics-based framework able to prioritize bridge adaptation measures as a function of bridge location, climate scenario, impact, vulnerability, risk, and cost in order to assist the authorities in the decision-making process. Because adaptation to climate change is highly context-specific, this approach is mainly focused on concrete bridges. Structural health monitoring technology is proposed as a mechanism for assessing and continuously evaluating the structural condition of bridges and for triggering adaptation measures as a function of the predicted severity of climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.