Abstract

The routing of runoff estimates from General Circulation Models (GCMs) is important to model river flow from large river basins and to estimate freshwater inflow into the oceans. Present routing approaches use arbitrary constants and empirical equations to determine travel times between the GCM grid cells. A new river flow routing scheme is developed, which uses physical catchment and river channel information and river discharge data. The scheme uses surface runoff and deep percolation data from land surface parameterization schemes, and routing is performed via linear surface and groundwater reservoirs. Geomorphological relationships between mean annual river discharge and other physical variables are used to interpolate existing information to define the channel morphology for the digital river networks at the routing model resolution. Applications of the routing scheme to the Mississippi and Amazon River Basins indicate that it performs adequately. The scheme does not require the calibration of parameters and can thus be easily used in GCMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call