Abstract

There is increasing concern about the potential effects of noise pollution on marine life in the world’s oceans. For marine mammals, anthropogenic sounds may cause behavioral disruption, and this can be quantified using a risk function that relates sound exposure to a measured behavioral response. Beaked whales are a taxon of deep diving whales that may be particularly susceptible to naval sonar as the species has been associated with sonar-related mass stranding events. Here we derive the first empirical risk function for Blainville’s beaked whales (Mesoplodon densirostris) by combining in situ data from passive acoustic monitoring of animal vocalizations and navy sonar operations with precise ship tracks and sound field modeling. The hydrophone array at the Atlantic Undersea Test and Evaluation Center, Bahamas, was used to locate vocalizing groups of Blainville’s beaked whales and identify sonar transmissions before, during, and after Mid-Frequency Active (MFA) sonar operations. Sonar transmission times and source levels were combined with ship tracks using a sound propagation model to estimate the received level (RL) at each hydrophone. A generalized additive model was fitted to data to model the presence or absence of the start of foraging dives in 30-minute periods as a function of the corresponding sonar RL at the hydrophone closest to the center of each group. This model was then used to construct a risk function that can be used to estimate the probability of a behavioral change (cessation of foraging) the individual members of a Blainville’s beaked whale population might experience as a function of sonar RL. The function predicts a 0.5 probability of disturbance at a RL of 150dBrms re µPa (CI: 144 to 155) This is 15dB lower than the level used historically by the US Navy in their risk assessments but 10 dB higher than the current 140 dB step-function.

Highlights

  • With the continued rise in world population and the associated increase in global industrialization, the input of anthropogenic noise into the world’s oceans is of growing concern [1,2]

  • We have derived an empirical risk function for beaked whales that relates the probability of behavioral change to the RLrms from Mid-Frequency Active (MFA) sonar

  • The empirical risk function predicts that there is a 0.5 probability of disturbance at a received level of 150 dB (CI: 144–155) whereas the historical function predicts this will occur at a received level of 165 dB and the step function currently used by the U.S Navy assumes that a response is certain at any received level above 140 dB

Read more

Summary

Introduction

With the continued rise in world population and the associated increase in global industrialization, the input of anthropogenic noise into the world’s oceans is of growing concern [1,2]. Exposure to anthropogenic noise may disrupt their behavior, with potential consequences for their health, survival, and ability to reproduce [2,3] If such consequences are to be managed effectively, we need to relate the effects of this potential disturbance to the overall health of the population. One of the first steps in this process is to establish the relationship between the probability of a behavioral response and the level of acoustic disturbance to which an individual is exposed. Such a dose response relationship or risk function is used to assign a probability of adverse effect to a given level of exposure [4]. Determining the functional form of a contaminant’s effect on terrestrial species is difficult [5], while for marine species it is an even more daunting task

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.