Abstract

Plate-and-frame heat exchangers (PHEs) operating in process industries are fouled to a greater or lesser extent depending on surface temperature, surface condition, material of construction, fluid velocity, flow geometry and fluid composition. This fouling phenomenon is time-dependent and will result in a decrease in the overall heat transfer coefficient and increase in the pressure drop of the PHE. Once the overall heat transfer coefficient decreases to a minimum acceptable level, cleaning of the equipment becomes necessary to restore the performance. In this paper, we present a simple probabilistic approach to characterize various fouling models that are commonly encountered in many industries. These random fouling growth models are then used to investigate the impact on risk based thermal effectiveness, overall heat transfer coefficient and the hot- and cold-fluid outlet temperatures of a PHE. All the results are presented in a generalized form in order to demonstrate the generality of the risk-based procedure discussed in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.