Abstract

Utilizing multi-carrier energies such as wind energy, electric vehicle (EV) and battery banks are a significant step toward a cleaner production. Hence, This paper proposes a stochastic-based decision-making framework for the efficient short-term management of smart energy hub (EH) in restructured power systems with high penetration of renewable energy. The electrical and natural gas carriers are the input of smart EH, while the electricity and heat demands are considered as the outputs. The EH, including battery storage system (BSS) and EV fleet, is managed in the regulation market and day-ahead (DA) horizons. The energy hub operator makes optimal decisions regarding the natural gas network and energy supply for the thermal and electricity customers. An optimal self-scheduling model is developed to take into account the day ahead (DA) and regulation markets (RM) and decisions regarding generations of electrical and thermal devices as well as EV aggregator decisions. The primary goal of the proposed framework is minimizing the cost of procuring electricity and heat energy carriers in DA and regulation markets, including upward/downward regulations via a stochastic mixed-integer linear programming (MILP) approach. In order to get the uncertainty around the exact outcomes of RM prices, wind generation, and EV patterns, the model also takes into account the conditional value at risk (CVaR) term. The proposed formulation is examined by applying to a smart EH. Results show the effectiveness and usefulness of the proposed framework in managing the smart EHs efficiently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.