Abstract
Disasters such as hurricanes, earthquakes and floods continue to have devastating socioeconomic impacts and endanger millions of lives. Shelters are safe zones that protect victims from possible damage, and evacuation routes are the paths from disaster zones toward shelter areas. To enable the timely evacuation of disaster zones, decisions regarding shelter location and routing assignment (i.e., traffic assignment) should be considered simultaneously. In this work, we propose a risk-averse stochastic programming model with a chance constraint that takes into account the uncertainty in the demand of disaster sites while minimizing the total evacuation time. The total evacuation time reflects the efficacy of emergency management from a system optimal (SO) perspective. A conditional value-at-risk (CVaR) is incorporated into the objective function to account for risk measures in the presence of uncertain post-disaster demand. We resolve the non-linear travel time function of traffic flow by employing a second-order cone programming (SOCP) approach and linearizing the non-linear chance constraints into a new mixed-integer linear programming (MILP) reformulation so that the problem can be directly solved by state-of-the-art optimization solvers. We illustrate the application of our model using two case studies. The first case study is used to demonstrate the difference between a risk-neutral model and our proposed model. An extensive computational study provides practical insight into the proposed modeling approach using another case study concerning the Black Saturday bushfire in Australia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.