Abstract

The current trend of increasing construction project size and complexity results in higher level of project risk. As a result, risk management is a crucial determinant of the success of a project. It seems necessary for construction companies to integrate a risk management system into their organizational structure. The main aim of this paper is to propose a risk assessment framework using Artificial Neural Network (ANN) technique. Three main phases of the proposed framework are risk management phase, ANN training phase and framework application phase. Thereby, Risk Factors are identified and analysed using Failure Mode and Effect Analysis (FMEA) technique. ANN model is created and trained to evaluate the impact of Risk Factors on Project Risk which is represented through the ratio of contractor’s profit to project costs. As a result, the framework with successful model is used as a tool to support the construction company in assessing risk and evaluate their impact on the project’s profit for new projects.
 Keywords: risk management; risk assessment; Artificial Neural Network (ANN); Failure Mode and Effect Analysis (FMEA); construction project.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.