Abstract
The diazotrophic cyanobacterium Trichodesmium is thought to be a major contributor to the new N in parts of the oligotrophic, subtropical, and tropical oceans. In this study, physiological and biochemical methods and transcriptome sequencing were used to investigate the influences of ocean acidification (OA) on Trichodesmium erythraeum (T. erythraeum). We presented evidence that OA caused by CO2 slowed the growth rate and physiological activity of T. erythraeum. OA led to reduced development of proportion of the vegetative cells into diazocytes which included up-regulated genes of nitrogen fixation. Reactive oxygen species (ROS) accumulation was increased due to the disruption of photosynthetic electron transport and decrease in antioxidant enzyme activities under acidified conditions. This study showed that OA increased the amounts of (exopolysaccharides) EPS in T. erythraeum, and the key genes of ribose-5-phosphate (R5P) and glycosyltransferases (Tery_3818) were up-regulated. These results provide new insight into how ROS and EPS of T. erythraeum increase in an acidified future ocean to cope with OA-imposed stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.