Abstract

We have performed ring polymer molecular dynamics (RPMD) calculations on the Cl + O3 → ClO + O2 reaction at temperatures ranging from 200 K to 400 K, and compared the results with previous theoretical studies and also with the available experimental data. This reaction presents a couple of features which makes it a particularly interesting and challenging case to be studied using RPMD. First, classically, this is essentially a barrierless reaction, with a saddle point located below the reactants. However, the free energy profiles along the reaction coordinate display small barriers due to the fact that the decrease in enthalpy from reactants to the TS is somewhat compensated by a decrease in entropy. To our knowledge this is the first time such a process is studied using this technique. Second, the transition state is located early in the reactant valley, therefore the inclusion of the recrossing correction in the RPMD calculations is crucial to determine rate coefficients. Regarding quantum effects, our calculations show that RPMD results are within the error bars of the purely classical ones. This implies that tunnelling is negligible in this reaction at the temperatures studied, not surprisingly for a system including oxygen and chlorine atoms, and that the zero point energies of reactants, transition state and products are practically the same. Finally, the rate coefficients presented in this work are in a fairly good agreement with the recommended experimental values, somewhat better than those obtained using other approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call