Abstract
Because of its fundamental importance in astrochemistry, the H2 + H3+ → H3+ + H2 reaction has been studied experimentally in a wide temperature range. Theoretical studies of the title reaction significantly lag primarily because of the challenges associated with the proper treatment of the zero-point energy (ZPE). As a result, all previous theoretical estimates for the ratio between a direct proton-hop and indirect exchange (via the H5+ complex) channels deviate from the experiment, in particular, at lower temperatures where the quantum effects dominate. In this work, the ring polymer molecular dynamics (RPMD) method is applied to study this reaction, providing very good agreement with the experiment. RPMD is immune to the shortcomings associated with the ZPE leakage and is able to describe the transition from direct to indirect mechanisms below room temperature. We argue that RPMD represents a useful tool for further studies of numerous ZPE-sensitive chemical reactions that are of high interest in astrochemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.