Abstract

In this paper we set up a rigorous justification for the reinitialization algorithm. Using the theory of viscosity solutions, we propose a well-posed Hamilton-Jacobi equation with a parameter, which is derived from homogenization for a Hamiltonian discontinuous in time which appears in the reinitialization. We prove that, as the parameter tends to infinity, the solution of the initial value problem converges to a signed distance function to the evolving interfaces. A locally uniform convergence is shown when the distance function is continuous, whereas a weaker notion of convergence is introduced to establish a convergence result to a possibly discontinuous distance function. In terms of the geometry of the interfaces, we give a necessary and sufficient condition for the continuity of the distance function.We also propose another simpler equation whose solution has a gradient bound away from zero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.