Abstract

AbstractThis paper presents a generalized, rigorous and simple large strain solution for the undrained expansion of a vertical cylindrical cavity in critical state soils using a rate‐based plasticity formulation: the initial stress field is taken as anisotropic, that is with horizontal stresses that differ from the vertical stress, and the soil is assumed to satisfy any two‐invariant constitutive model from the critical state (Cam‐clay) family; no simplifying assumption is made during the mathematical derivation; calculating the effective stresses around the cavity requires the solution of a nonlinear equation by means of the Newton–Raphson method in combination with quadrature. Cavity expansion curves and stress distributions in the soil are then presented for different critical state models (including the modified Cam‐clay model). The solution derived can be useful for estimating the instantaneous response of saturated low‐permeability soils around piles and self‐boring pressuremeters and can serve as trustworthy benchmark for numerical analysis codes. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.