Abstract
We consider the kinetic Cucker–Smale model with local alignment as a mesoscopic description for the flocking dynamics. The local alignment was first proposed by Karper, Mellet and Trivisa (2014), as a singular limit of a normalized nonsymmetric alignment introduced by Motsch and Tadmor (2011). The existence of weak solutions to this model was obtained by Karper, Mellet and Trivisa (2014), and in the same paper they showed the time-asymptotic flocking behavior. Our main contribution is to provide a rigorous derivation from a mesoscopic to a macroscopic description for the Cucker–Smale flocking models. More precisely, we prove the hydrodynamic limit of the kinetic Cucker–Smale model with local alignment towards the pressureless Euler system with nonlocal alignment, under a regime of strong local alignment. Based on the relative entropy method, a main difficulty in our analysis comes from the fact that the entropy of the limit system has no strict convexity in terms of density variable. To overcome this, we combine relative entropy quantities with the 2-Wasserstein distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.