Abstract
As humans’ additional arms or legs, supernumerary robotic limbs (SRLs) have gained great application prospects in many fields. However, current SRLs lack both rigidity/flexibility adaptability and arm/leg function conversion. Inspired by the muscular hydrostat characteristics of octopus tentacles, fiber-reinforced actuators (FRAs) were employed to develop SRLs simultaneously realizing flexible operation and stable support. In this paper, an SRL with FRAs was designed and implemented. The analytic model of the FRA was established to formulate the movement trajectory and stiffness profile of the SRL. A hierarchical hidden Markov model (HHMM) was proposed to recognize the wearer’s motion intention and control the SRL to complete the specific working mode and motion type. Experiments were conducted to exhibit the feasibility and superiority of the proposed robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.