Abstract

The manta ray, exemplifying an agile swimming mode identified as the median and paired fin (MPF) mode, inspired the development of underwater robots. Robotic manta typically comprises a central rigid body and flexible pectoral fins. Flexible fins provide excellent maneuverability. However, due to the complexity of material mechanics and hydrodynamics, its dynamics are rarely studied, which is crucial for the advanced control of robotic manta (such as trajectory tracking, obstacle avoidance, etc.). In this paper, we develop a multibody dynamic model for our novel manta robot by introducing a pseudo-rigid body (PRB) model to consider passive deformation in the spanwise direction of the pectoral fins while avoiding intricate modeling. In addressing the rigid-flexible coupling dynamics between flexible fins and the actuation mechanism, we employ a sequential coupling technique commonly used in fluid-structure interaction (FSI) problems. Numerical examples are provided to validate the MPF mode and demonstrate the effectiveness of the dynamic model. We show that our model performs well in the rigid-flexible coupling analysis of the manta robot. In addition to the straight-swimming scenario, we elucidate the viability of tailoring turning gaits through systematic variations in input parameters. Moreover, compared with finite element and CFD methods, the PRB method has high computational efficiency in rigid-flexible coupling problems. Its potential for real-time computation opens up possibilities for future model-based control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.