Abstract

We propose a new framework based on optimization on manifolds to approximate the solution of a Lyapunov matrix equation by a low-rank matrix. The method minimizes the error on the Riemannian manifold of symmetric positive semidefinite matrices of fixed rank. We detail how objects from differential geometry, like the Riemannian gradient and Hessian, can be efficiently computed for this manifold. As a minimization algorithm we use the Riemannian trust-region method of [P.-A. Absil, C. Baker, and K. Gallivan, Found. Comput. Math., 7 (2007), pp. 303–330] based on a second-order model of the objective function on the manifold. Together with an efficient preconditioner, this method can find low-rank solutions with very little memory. We illustrate our results with numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.