Abstract

Various optimization algorithms have been proposed to compute the Karcher mean (namely the Riemannian center of mass in the sense of the affine-invariant metric) of a collection of symmetric positive-definite matrices. Here we propose to handle this computational task with a recently developed limited-memory Riemannian BFGS method using an implementation tailored to the symmetric positive-definite Karcher mean problem. We also demonstrate empirically that the method is best suited for large-scale problems in terms of computation time and robustness when comparing to the existing state-of-the-art algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.