Abstract

Non-Euclidean, or incompatible elasticity, is an elastic theory for pre-stressed materials, which is based on a modeling of the elastic body as a Riemannian manifold. In this paper we derive a dimensionally reduced model of the so-called membrane limit of a thin incompatible body. By generalizing classical dimension reduction techniques to the Riemannian setting, we are able to prove a general theorem that applies to an elastic body of arbitrary dimension, arbitrary slender dimension, and arbitrary metric. The limiting model implies the minimization of an integral functional defined over immersions of a limiting submanifold in Euclidean space. The limiting energy only depends on the first derivative of the immersion, and for frame-indifferent models, only on the resulting pullback metric induced on the submanifold, i.e. there are no bending contributions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call