Abstract

1. In the European rock lobster, Homarus gammarus, two bilaterally symmetrical pairs of commissural neurons, P and commissural pyloric (CP), evoke excitatory postsynaptic potentials in the neurons of the pyloric motor network. The present paper shows that the two commissural neurons also exert a modulatory control over the pyloric network. 2. The P and CP neurons were active during ongoing pyloric rhythms. Ongoing pyloric activity was terminated when the neurons were hyperpolarized to inhibit their firing. 3. When the pyloric network was quiescent, depolarizing either the P or CP neuron induced a robust pyloric rhythm. 4. We studied the actions of the P and CP neurons on individual pyloric neurons isolated in situ from network interactions by a photoinactivation techniques. The P neuron induced oscillatory properties in the pacemaker pyloric dilator (PD) neurons and the motor neuron, ventricular dilator (VD), whereas the CP neuron induced rhythmogenic properties in all the network neurons but VD. Together, the P-CP neurons modulated the entire pyloric network. The modulatory effects of the P-CP neurons did not outlast the duration of their discharge. 5. The P and CP neurons also controlled the firing frequency of all the pyloric neurons. They may, in addition, control phasing of the constrictor neurons discharges, but this effect was state-dependent and occurred only when the pyloric central pattern generator was functioning weakly. Their role in providing flexibility to the network operation appeared relatively limited. 6. We conclude that the P and CP neurons are good candidates for insuring long-term maintenance of pyloric network activity patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call