Abstract

Rhodopsin is a visual pigment ubiquitous in multicellular animals. If visual pigments have a common ancient origin, as is believed, then some unicellular organisms might also use a rhodopsin photoreceptor. We show here that the unicellular alga Chlamydomonas does indeed use a rhodopsin photoreceptor. We incorporated analogues of its retinal chromophore into a blind mutant; normal photobehaviour was restored and the colour of maximum sensitivity was shifted in a manner consistent with the nature of the retinal analogue added. The data suggest that 11-cis-retinal is the natural chromophore and that the protein environment of this retinal is similar to that found in bovine rhodopsin, suggesting homology with the rhodopsins of higher organisms. This is the first demonstration of a rhodopsin photoreceptor in an alga or eukaryotic protist and also the first report of behavioural spectral shifts caused by exogenous synthetic retinals in a eukaryote. A survey of the morphology and action spectra of other protists suggests that rhodopsins may be common photoreceptors of chlorophycean, prasinophycean and dinophycean algae. Thus, Chlamydomonas represents a useful new model for studying photoreceptor cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.