Abstract

The structure of the lipid A from Rhizobium etli and Rhizobium leguminosarum lipopolysaccharides (LPSs) lacks phosphate and contains a galacturonosyl residue at its 4' position, an acylated 2-aminogluconate in place of the proximal glucosamine, and a very long chain omega-1 hydroxy fatty acid, 27-hydroxyoctacosanoic acid (27OHC28:0). The 27OHC28:0 moiety is common in lipid A's among members of the Rhizobiaceae and also among a number of the facultative intracellular pathogens that form chronic infections, e.g., Brucella abortus, Bartonella henselae, and Legionella pneumophila. In this paper, a mutant of R. leguminosarum was created by placing a kanamycin resistance cassette within acpXL, the gene which encodes the acyl carrier protein for 27OHC28:0. The result was an LPS containing a tetraacylated lipid A lacking 27OHC28:0. A small amount of the mutant lipid A may contain an added palmitic acid residue. The mutant is sensitive to changes in osmolarity and an increase in acidity, growth conditions that likely occur in the nodule microenvironment. In spite of the probably hostile microenvironment of the nodule, the acpXL mutant is still able to form nitrogen-fixing root nodules even though the appearance and development of nodules are delayed. Therefore, it is possible that the acpXL mutant has a host-inducible mechanism which enables it to adapt to these physiological changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call