Abstract

The mechanical behavior of high damping rubber bearings (HDRBs) is investigated under horizontal cyclic shear deformation with a constant vertical compressive load. On the basis of experimental observations, an elasto-viscoplastic rheology model of HDRBs for seismic analysis is developed. In this model, the Maxwell model is extended by adding a nonlinear elastic spring and an elasto-plastic model (spring-slider) in parallel. In order to identify constitutive relations of each element in the rheology model, an experimental scheme comprised of three types of tests, namely a cyclic shear (CS) test, a multi-step relaxation (MSR) test, and a simple relaxation (SR) test, are carried out at room temperature. HDRB specimens with the standard ISO geometry and three different high damping rubber materials are employed in these tests. A nonlinear viscosity law of the dashpot in the Maxwell model is deduced from the experimental scheme, and incorporated into the rheology model to reproduce the nonlinear rate dependent behavior of HDRBs. Finally, numerical simulation results for sinusoidal loading are presented to illustrate capability of the proposed rheology model in reproducing the mechanical behavior of HDRBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.