Abstract

HypothesisHigh and medium internal phase Pickering emulsions stabilized with cellulose nanocrystals (CNCs) exhibited very different performance compared to their peers stabilized with a surfactant. In this paper, we ascribed the difference to the formation of hydrogen bonding and van der Waals interactions between the CNC nanoparticles on adjacent oil droplets. ExperimentsRheological properties of CNC-stabilized oil-in-water medium internal phase emulsions (MIPEs, oil content = 65% v/v) and high internal phase emulsions (HIPEs, oil content = 80% v/v) were comprehensively characterized using both oscillatory and rotational tests. FindingsIt was found that in the MIPEs, the van der Waals and hydrogen bonding interactions dominate the emulsion properties, whereas the compact structure of oil droplets plays a more important role in the HIPEs. CNC concentration in the aqueous phase also affects the emulsion properties, especially for the HIPEs, and the results can be correlated to the stabilization mechanisms we previously reported. The information from these tests provides a much-needed guidance for the practical application of CNC-stabilized emulsions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call