Abstract

The ciphertext policy attribute-based encryption (CP-ABE) is widely used in cloud storage. It not only provides a secure data sharing scheme but also has the characteristics of fine-grained access control. However, most CP-ABE schemes have problems such as the ciphertext length increases with the complexity of the access policy, the encryption scheme is complex, the computational efficiency is low, and the fine-grained revocation cannot be performed. In view of the above problems, this pa-per proposes an efficient CP-ABE scheme with fine-grained revocable storage and constant ciphertext length. The scheme combines proxy re-encryption with CP-ABE technology, adopts the flexible access strategy AND-gates on multi-valued attributes with wildcards (AND∗m ), and realizes revocable storage and fixed-length ciphertext. At the same time, in order to reduce the amount of user decryption calcu-lation, the complex operation in the decryption process is outsourced to the third-party server and the decryption result is verified to ensure the correctness of the information. Finally, the security of the scheme is proved under the decisional bilinear Diffie-Hellman (DBDH) assumption. In addition, the performance analysis shows that the scheme is efficient and feasible in cloud storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.