Abstract

A 2-step microtiter plate assay was developed to simultaneously check wide values of MOIs of bacteriophages, ranging between MOI-0.0001 and MOI-10000 in the first step and optimize the most suitable MOI (lowest quantity of phage) for inhibiting the growth of the target bacteria in the second step. The results of the first step revealed that the effective MOI of coliphage-ɸ5 for controlling the growth of antimicrobial resistant (AMR) E. coli was between 4.36 and 43.6 for E.coli-EC-3; between 38.2 and 382 for E.coli-EC-7 and between 81.5 and 815 for E.coli-EC-11. The optimum MOI of coliphage-ɸ5 determined in the second step was 17.44, 191 and 326 for controlling the growth of E.coli-EC-3; E.coli-EC-7 and E.coli-EC-11, respectively. The effective MOI of vibriophage-ɸLV6 for controlling luminescent Vibrio harveyi in the first step was found to be between 18.3 and 183 and the optimum MOI as determined in the second step was 79. The sequential 2-step microtiter plate method yielded faster optimization of MOI and was economical compared to the conventional flask method. The measurement of OD values at 550 nm and 600 nm showed similar trend and replicate data from 5-wells and 3-wells yielded identical pattern indicating that the measuring absorbance data in 3-replicate wells at either OD550 or OD600 is sufficient to generate quantifiable phage lysis data. The 2-step microtiter plate assay finds application in phage therapy in human health care, agriculture and animal agriculture for determining the optimum MOIs for selected bacteriophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.