Abstract
Periodic density functional theory calculations are here used to investigate polymorphism in poly(butylene-2,6-naphthalate) (PBN) and to understand the intra- and inter-molecular effects which are responsible for its behavior. Despite its similarity to poly(butylene terephthalate), the larger π-electron conjugation promoted by the presence of naphtyl rings generates peculiar intramolecular effects and stronger interchain packing interactions which cause some differences between the two polymers. This is particularly evident by comparing the structural and spectroscopic data predicted for the α and β crystals with respect to the respective one dimensional infinite chain models. Two different interpretations have been proposed in the previous literature to describe the structural transitions from the α to the β polymorph of PBN upon mechanical deformation or thermal treatments: from one hand, the setting on of a transplanar conformation on the methylene chains has been proposed while, on the other hand, a larger coplanarity of the ester groups and the naphtyl rings has been suggested. Our calculations reveal that both these effects are present in β-PBN and should be both taken into account to give an interpretation of the trends observed by IR spectroscopy and structural characterization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.