Abstract
Let $I_{\alpha}$ be the linear and $\mathcal{I}_{\alpha}$ be the bilinear fractional integral operators. In the linear setting, it is known that the two-weight inequality holds for the first order commutators of $I_{\alpha}$. But the method can't be used to obtain the two weighted norm inequality for the higher order commutators of $I_{\alpha}$. In this paper, using some known results, we first give an alternative simple proof for the first order commutators of $I_{\alpha}$. This new approach allows us to consider the higher order commutators. Then, by using the Cauchy integral theorem, we show that the two-weight inequality holds for the higher order commutators of $I_{\alpha}$. In the bilinear setting, we present a dyadic proof for the characterization between $BMO$ and the boundedness of $[b,\mathcal{I}_{\alpha}]$. Moreover, some bilinear paraproducts are also treated in order to obtain the boundedness of $[b,\mathcal{I}_{\alpha}]$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.