Abstract
In Paper I of this work we have sketched an improved MRCI algorithm and its coupling to the effective valence-shell Hamiltonian OM2. To check the quality of the resulting OM2/MRCI approach, it is applied here to the excited valence states of all-trans butadiene. As is explained by a review of previous theoretical work, proper descriptions of these states posed severe problems within correlated ab initio treatments but seemed to be trivial within simple correlated π-electron models. We now show that an extended MRCI treatment of the correlations among all valence electrons as described by OM2 closely reproduces the experimental evidence, placing the vertical 2 1Ag excitation by about 0.2 eV below the 1 1Bu excitation. By an analysis of σ–π interactions we explain the corresponding earlier success of correlated π-electron theory. Exploiting the enhanced capabilities of the new approach we investigate the potential surfaces. Here, OM2/MRCI is shown to predict that the 2 1Ag state is energetically lowered about four times more strongly than the 1 1Bu state upon geometry relaxation constrained to the C2h symmetry. We conclude that OM2/MRCI should be well-suited for the study of excited state surfaces of organic dye molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.