Abstract

The degree-diameter problem seeks to find the maximum possible order of a graph with a given (maximum) degree and diameter. It is known that graphs attaining the maximum possible value (the Moore bound) are extremely rare, but much activity is focused on finding new examples of graphs or families of graph with orders approaching the bound as closely as possible.There has been recent interest in this problem as it applies to mixed graphs, in which we allow some of the edges to be undirected and some directed. A 2008 paper of Nguyen and Miller derived an upper bound on the possible number of vertices of such graphs. We show that for diameters larger than three, this bound can be reduced and we present a corrected Moore bound for mixed graphs, valid for all diameters and for all combinations of undirected and directed degrees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.