Abstract

The development of the vertebrate dorsal midline (floor plate, notochord, and hypochord) has been an area of classical research and debate. Previous studies in vertebrates have led to contrasting models for the roles of Shh and Notch signaling in specification of the floor plate, by late inductive or early allocation mechanisms, respectively. Here, we show that Notch signaling plays an integral role in cell fate decisions in the dorsal midline of Xenopus laevis, similar to that observed in zebrafish and chick. Notch signaling promotes floor plate and hypochord fates over notochord, but has variable effects on Shh expression in the midline. In contrast to previous reports in frog, we find that Shh signaling is not required for floor plate vs. notochord decisions and plays a minor role in floor plate specification, where it acts in parallel to Notch signaling. As in zebrafish, Shh signaling is required for specification of the lateral floor plate in the frog. We also find that the medial floor plate in Xenopus comprises two distinct populations of cells, each dependent upon different signals for its specification. Using expression analysis of several midline markers, and dissection of functional relationships, we propose a revised allocation mechanism of dorsal midline specification in Xenopus. Our model is distinct from those proposed to date, and may serve as a guide for future studies in frog and other vertebrate organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.