Abstract

Quasi-elastic neutron scattering (QENS) has many applications that are directly related to the development of high-performance functional materials and biological macromolecules, especially those containing some water. The analysis method of QENS spectra data is important to obtain parameters that can explain the structure of materials and the dynamics of water. In this paper, we present a revised jump-diffusion and rotation-diffusion model (rJRM) used for QENS spectra data analysis. By the rJRM, the QENS spectra from a pure magnesium-silicate-hydrate (MSH) sample are fitted well for the Q range from 0.3 Å−1 to 1.9 Å−1 and temperatures from 210 K up to 280 K. The fitted parameters can be divided into two kinds. The first kind describes the structure of the MSH sample, including the ratio of immobile water (or bound water) C and the confining radius of mobile water a0. The second kind describes the dynamics of confined water in pores contained in the MSH sample, including the translational diffusion coefficient Dt, the average translational residence time τ0, the rotational diffusion coefficient Dr, and the mean squared displacement (MSD) . The rJRM is a new practical method suitable to fit QENS spectra from porous materials, where hydrogen atoms appear in both solid and liquid phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.