Abstract

Correctly quantifying total losses of irrigation in a center pivot system is important for improving application management and efficiency (Ea). The equations usually used to estimate Ea in sprinkler irrigation systems do not consider certain aspects, such as height of sprinklers relative to crop height, leaf interception (LI) of tall-growing crops or partial residue retention (PRR). The aim of this study was to incorporate these components into a new Ea equation adapted to the center pivot system. The trials were conducted in corn grown under no tillage in Córdoba, Argentina. To determine the distribution uniformity (DUpa), 96 catch cans were arranged at a spacing of 3 m, and the sprinklers with similar discharge flow from a center pivot of five towers (27.8 ha) were grouped together. Four irrigation depths (40, 24, 12 and 6 mm) were evaluated at different phenological stages, as well as the control condition without crop. Twenty-eight measurements were taken, and DUpa was statistically compared with respect to the different depths applied and phenological stages as well as the impact on yield. For the 11 grouped segments, with irrigation intensity between 5.7 and 77.4 mm h−1, DUpa for the control condition ranged from very good to excellent (85 to 90%) but decreased significantly with crop growth. Neither the different intensities nor the irrigation depths influenced DUpa up to V10, when it decreased significantly for the 6 mm depth. The spacing between sprinklers had an effect on DUpa and crop yield, decreasing from 18 to 14 ton ha−1 with the largest spacing (5 m). PRR and LI were statistically adjusted, and a revised equation of application efficiency was obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call